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Abstract

In the paper a fuzzy adaptive control algorithm is presented. It belongs to the class of direct model reference
adaptive techniques based on a fuzzy (Takagi–Sugeno) model of the plant. The plant to be controlled is
assumed to be nonlinear and predominantly of the 2rst order. Consequently, the resulting adaptive and control
laws are very simple and thus interesting for use in practical applications. The system remains stable in the
presence of unmodelled dynamics (disturbances, parasitic high-order dynamics and reconstruction errors are
treated explicitly). The global stability of the overall system is proven in the paper, i.e. it is shown that all
signals remain bounded while the tracking error and estimated parameters converge to some residual set that
depends on the size of disturbance and high-order parasitic dynamics. The proposed algorithm is tested on a
simulated three-tank system. Its performance is compared to the performance of a classical MRAC.
c© 2002 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of control of nonlinear plants has received a great deal of attention in the past. The
problem itself is fairly demanding, but when the model of the plant is unknown or poorly known,
the solution becomes considerably more di9cult. Nevertheless, several approaches exist to solve the
problem. One possibility is to apply adaptive control. Classical adaptive control schemes (in this
paper, adaptive control algorithms for LTI plants developed by the end of the 1970s are referred
to as classical) do not produce good results, although adaptive parameters try to track the “true”
local linear parameters of the current operating point. To overcome this problem, classical adaptive
control was extended in the 1980s and 1990s to time-varying [24] and nonlinear plants [10]. Since
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we restricted our attention mainly to nonlinear plants that are more or less time-invariant, the former
approaches were not as relevant even though they produce better results than classical adaptive
control. The main drawback of adaptive control algorithms for nonlinear plants is that they demand
fairly good knowledge of mathematics and are thus avoided by practicing engineers.

Many successful applications of fuzzy controllers [20,18] have shown their ability to control non-
linear plants. Despite their practical success, it seems that general control design techniques are still
not available. One obvious solution is to introduce some sort of adaptation into the fuzzy controller.
The 2rst attempts at constructing a fuzzy adaptive controller can be traced back to [13], where so-
called linguistic self-organising controllers were introduced. Many approaches were later presented
where a fuzzy model of the plant was constructed on-line, followed by control parameters adjustment
[11,16,17]. The main drawback of these schemes was that their stability was not treated rigorously.
The universal approximation theorem [27] provided a theoretical background for new fuzzy direct
and indirect adaptive controllers [26,19,22] whose stability was proven using the Lyapunov theory.
Most of the early controllers demanded full state measurement, which is usually quite an unrealistic
assumption. In [23] the problem was avoided by using a high-gain observer. Since the latter causes
the robustness of the system to decrease, parameter projection is included in adaptive law to re-
gain robustness. Another important issue in fuzzy adaptive control is how to overcome the di9culty
of nonlinearly parameterised observers. In most of the current fuzzy adaptive systems, parameters
appear linearly in the parameterised fuzzy approximators. Some work in this direction has already
been done [5].

Adaptive control based on neural networks is very similar (in some cases even equivalent) to
fuzzy adaptive control. Research in this area has been very active in recent years. In [4,8,19], model
reference adaptive neural-network-based controllers are presented and their stability is proven using
the Lyapunov theory. In [3], two controllers are used: a linear robust adaptive one and a neural-
network-based adaptive one. A switching mechanism is proposed to improve performance of the
system, while robustness is still guaranteed.

In this paper, robustness analysis of the controlled system plays a central role. It is well known
that a fuzzy system can approximate any continuous function but, in general, there is always a
reconstruction error that acts as a disturbance in the adaptive law. The problem of disturbances
and unmodelled dynamics is very well known in the adaptive community [15]. Robust adaptive
control was proposed to overcome this [6,7]. Similar solutions have also been used in fuzzy adaptive
controllers, i.e. projection [23], dead zone [9], etc. have been included in the adaptive law to prevent
instability due to reconstruction error. In this paper, not only reconstruction error and disturbances
but also error due to high-order parasitic dynamics (which are inevitable) is treated explicitly. The
latter is especially problematic since it can become unbounded [7]. The rationale behind the study of
the inJuence of parasitics is that the control plant is assumed to be nonlinear and predominantly of
the 2rst order (higher-order parasitics are catered for by the robustness properties of the controller).
In our opinion, such plants occur quite often in process industries. Our assumption results in very
simple control and adaptive laws. The interesting thing is that the proposed direct fuzzy model
reference adaptive control (DFMRAC) algorithm greatly resembles the classical MRAC of the 2rst-
order plant. In fact, it can be obtained by fuzzi2cation of control gains and the inclusion of e1-
modi2cation [12] into the adaptive law. The stability of DFMRAC is examined thoroughly within
the framework proposed by Ioannou and Sun [7]. The boundedness of estimated parameters, the
tracking error and all the signals in the system is proven, as well as the convergence of the tracking
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error and estimated parameters to some residual set that depends on the size of disturbance and
parasitic dynamics.

The paper is organised as follows. In Section 2, the class of plants that will be discussed in the
paper is presented. In Section 3, a description of the proposed algorithm is given. The performance of
the algorithm is tested on a simulated three-tank system in Section 4. The conclusions are presented
in Section 5. In the appendices the proofs of the important theorems are given, together with the
necessary background.

2. Plant model development

There are many approaches to nonlinear system identi2cation in the literature. Among them, iden-
ti2cation by means of fuzzy models is quite common. Since our aim was to use simple algorithms,
the Takagi–Sugeno model was chosen to describe plant behaviour [21]. If the 2rst order plant is
assumed and the nonlinearity of the plant depends on two measurable quantities z1 and z2, the model
is described by k if–then rules in the following form

if z1 is Aia and z2 is Bib then ẏp = −aiyp + biu
ia = 1; : : : ; na; ib = 1; : : : ; nb; i = 1; : : : ; k; (1)

where u and yp are the input and output of the plant, respectively, Aia , Bib are fuzzy membership
functions, and ai and bi are the plant parameters in the ith fuzzy domain. The antecedent variables
that de2ne the fuzzy domain in which the system is currently situated are denoted by z1 and z2
(in actual fact there can be only one such variable and there can also be more, but this does not
aMect the approach described in this paper). There are na and nb membership functions for the 2rst
and the second antecedent variables, respectively. The product k = na× nb de2nes the number of
fuzzy rules. The membership functions have to cover the whole operating area of the system. The
output of the Takagi–Sugeno model is then given by the following equation:

ẏp =
∑k

i=1(
0
i (�)(−aiyp + biu))∑k

i=1 
0
i (�)

; (2)

where � represents the vector of antecedent variables zi. The degree of ful2lment 0
i (�) is obtained

using the T-norm, which in this case is a simple algebraic product of membership functions

0i (�) = T (�Aia (z1); �Bib (z2)) = �Aia (z1) · �Bib (z2); (3)

where �Aia (z1) and �Bib (z2) stand for degrees of ful2lment of the corresponding membership functions.
The degrees of ful2lment for the whole set of rules can be written in compact form

R0 = [01 02 : : : 0k]
T (4)

and given in normalised form as

R = R0∑k
i=1 

0
i

: (5)
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Due to (2) and (5), the 2rst-order plant can be modelled in fuzzy form as

ẏp = −(RTa)yp + (RTb)u; (6)

where a= [a1 a2 · · · ak ]T and b= [b1 b2 · · · bk ]T are vectors of unknown plant parameters in re-
spective fuzzy domains.

To assume that the controlled system is of the 2rst order is a quite huge idealisation; parasitic
dynamics are therefore included in the model of the plant. The linear time-invariant system of the
2rst order with stable factor plant perturbations is described by the following equation:

yp(s) =
b=(s+ c) + �1(s)

(s+ a)=(s+ c) + �2(s)
u(s); (7)

where b=(s + a) is the transfer function of the nominal system, c is a positive constant, �1(s) and
�2(s) are stable transfer functions [25], and u(s) and yp(s) are the Laplace transforms of the plant’s
input and output, respectively. By multiplying the numerator and denominator of (7) by (s+ c), the
following is obtained:

yp(s) =
b+ �′

u(s)
s+ a+ �′

y(s)
u(s); (8)

where the de2nition of �′
u(s) and �′

y(s) follows directly. Since a and b in (8) are not known, they
can be found such that �′

u(s) and �′
y(s) are de2nitely strictly proper transfer functions. 1 Eq. (8)

can be rewritten as

syp = −ayp + bu− �′
y(s)yp + �

′
u(s)u: (9)

By taking into account the fuzzy model of plant (6), the 2rst two terms in (9) that apply to linear
systems are replaced and the plant model becomes:

ẏp = −(RTa)yp + (RTb)u− �′
y(p)yp + �

′
u(p)u; (10)

where p is a diMerential operator d=dt, while �′
y(p) and �′

u(p) are linear operators in the time
domain that are equivalent to transfer functions �′

y(s) and �′
u(s). It is assumed that the plant is also

disturbed by an external disturbance and the 2nal model of the plant used in this paper is obtained
by adding the disturbance d′ to (10):

ẏp = −(RTa)yp + (RTb)u− �′
y(p)yp + �

′
u(p)u+ d

′: (11)

Assumptions on the plant model (11):

(A1) Absolute values of the elements of vector b are bounded from below and from above:
bmin¡|bi|¡bmax, i=1; 2; : : : ; k and bmin and bmax are some positive constants.
(A2) Absolute values of the elements of vector a are bounded from above: |ai|¡amax, i=1; 2; : : : ; k

and amax is a positive constant.

1 If they are only biproper, a solution with diMerent a, b, �′
u(s) and �′

y(s) can always be found such that �′
u(s) and

�′
y(s) are strictly proper and (8) still holds.
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(A3) The signs of the elements in vector b are the same.

Some comments on the above assumptions:
If some bi approached 0, the system would become almost uncontrollable in that operating point.

We know that uncontrollability is not easily circumvented in any type of control, especially not in
adaptive control; the 2rst part of A1 (‘bounded from below’ part) therefore has to hold. The same
goes for the consequences of violation of assumption A3, namely some operating points (charac-
terised by R) would exist where the gain of the linearised plant RTb was 0 if the elements in b
were not of the same sign. Moreover, the gain of the linearised plant would be positive in some
operating points and negative in others. The control of such a plant would always be a problem
and our attention is not directed to plants of that kind. Although fuzzy models can be regarded
as universal approximators, only arbitrary small modelling errors are attainable in general. That is
why over-large elements of a or b would cause large modelling errors (the second part of A1—the
‘bounded from above’ part—and A2 have to hold).

It is worth mentioning that only dominant plant dynamics are assumed to be nonlinear while
parasitic dynamics are linear. This is not a too unrealistic assumption since only the upper bound
on the certain norms of the unmodelled dynamics are used in the theorem given later on in the
paper. If the nonlinearity of the unmodelled dynamics is not too obvious, the proposed plant model
is su9cient and can be used in quite a broad range of real plants, especially in process industries
where 2rst-order nonlinear systems are quite common.

The prerequisite for using model (11) is that we know what system variables the nonlinearity
depends upon, i.e. what signals (z1 and z2 in this section) inJuence the calculation of R. The choice
of these so-called fuzzi2cation or antecedent variables depends on the plant behaviour and is a
similar problem to that of structural identi2cation [21] in the case of the Takagi–Sugeno model. In
[21] it was proposed that these variables were system input and system output. Since the realisation
of control is not possible if R depends on u, R has to be calculated by means of yp and=or some
other signal(s) that might be correlated with the change in the system dynamics. Since the choice
of fuzzi2cation variables does not inJuence the form of the model (11) and the algorithm proposed
later, it will not be addressed in the paper.

3. Proposed direct fuzzy model reference adaptive control algorithm

In the previous section the model of the plant was described. The 2rst two terms on the right-hand
side of (11) will serve as a model for control design, while the other terms will be catered for by
the robustness properties of the adaptive and control laws since they are unknown in advance. It has
to be pointed out that a and b are also unknown. To overcome this di9culty, adaptive control will
be used.

The question still remains whether to use a direct or indirect adaptive scheme. Both approaches
have some advantages and some disadvantages that are well known and documented for the adaptive
control of LTI plants (e.g. [7]). Since it is our belief that it is much harder to prove global stability
in the latter case, direct adaptive control was used in our approach, i.e. control parameters were
estimated directly by using measurable signals. The task of this section is to 2nd the control and
adaptive laws that suit the design objective.
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It was mentioned that the proposed approach to fuzzy adaptive control greatly resembles the
classical MRAC. Since our attention is focused on plants that are predominantly of the 2rst order,
the MRAC of the 2rst-order LTI plant will be recalled 2rst. The control algorithm will later be
extended to nonlinear plants of the 2rst order with high-order parasitics.

3.1. MRAC of LTI plants

Let us brieJy recall the classical approach to MRAC of the 2rst-order linear time-invariant system.
The approach described below is based on the Lyapunov theory and can be found in most of the
textbooks on adaptive control (e.g. [2]).

The LTI plant of the 2rst order can be described by means of the diMerential equation

ẏp = −ayp + bu; (12)

where u and yp are the input and the output of the plant, respectively, while a and b are unknown
constants. By choosing reference model

ẏm = −amym + bmw (13)

a control law

u = fw − qyp (14)

follows to achieve the design objective, where w is the reference signal. The classical solution to
2nd the correct values for control parameters f and q is to estimate them by means of the following
adaptive law:

ḟ = −�f sgn(b)ew;
q̇ = �q sgn(b)eyp; (15)

where e is the tracking error, de2ned as the diMerence between yp and ym, while �f and �q are
arbitrary positive constants, usually referred to as adaptive gains.

As shown by Rohrs et al. [15], the above approach is not robust with respect to high-order
unmodelled dynamics and disturbances; therefore the adaptive law or the control law or external
excitation has to be changed to achieve robustness. As will be shown later on in the paper, our
approach was to use modi2ed adaptive law.

3.2. DFMRAC for the class of nonlinear plants

The reason for presenting MRAC for the 2rst-order linear plant in the previous section is that the
proposed DFMRAC algorithm is a straightforward extension of the former. The latter assumes the
fuzzi2cation of the forward gain f and the feedback gain q. The fuzzi2ed gains are described by
means of fuzzy numbers f and q

fT = [f1 f2 · · · fk];

qT = [q1 q2 · · · qk]; (16)



S. Bla�zi�c et al. / Fuzzy Sets and Systems 139 (2003) 3–33 9

where k stands for the number of fuzzy rules, as mentioned before. The reference model is the same
as in (13)

ẏm = −amym + bmw: (17)

The control law is obtained by slightly extending (14); namely, scalar control gains are substituted
by vector ones:

u = (RTf)w − (RTq)yp: (18)

The tracking error is the same as before

e = yp − ym: (19)

3.2.1. Adaptive law
The most important part of the algorithm is the adaptive law that can be put down in scalar form

ḟi = −�fibsign �wi − �fi|�m|�0fii; i = 1; 2; : : : ; k;

q̇i = �qibsign �ypi − �qi|�m|�0qii; i = 1; 2; : : : ; k (20)

or in equivalent vector form, which is more suitable for analysis due to its compactness

ḟ = −�fbsign�wR− �f|�m|�0FR;
q̇ = �qbsign�ypR− �q|�m|�0QR; (21)

where �fi and �qi are positive scalar adaptive gains, � is the error that will be de2ned later, m is a
variable for normalisation to be de2ned, �0 is a design parameter that determines the inJuence of the
‘leakage’ [7], F=diag(f); Q=diag(q), and �f and �q are diagonal matrices of the corresponding
adaptive gains �fi and �qi, respectively. If the sign of the elements in vector b in (11) is negative,
bsign is −1; otherwise it is +1. By introducing XT, [fT qT] and �T, [RTw −RTyp]; (21) can be
made even more compact

Ẋ = −�bsign��− �|�m|�0XdR; (22)

where � is the diagonal matrix of scalar adaptive gains and XTd = [FT QT].
There are a number of remarks concerning the adaptive law (22) that must be made here. The

2rst term on the right-hand side of (22) is equivalent to the adaptive law (15). The second term
introduces leakage, more speci2cally so-called e1-modi2cation [12]. Note that instead of the product
XdR, only X is used in [12], where the situation was simpler since the plant was LTI. The diMerence
is seen more clearly from (20). When the system leaves a certain operating region (fuzzy domain),
the corresponding membership function i becomes 0. If i was not included in the second term
on the right-hand side of (20), the system would gradually forget the estimated parameter values
fi and qi. When the system returned to the operating region, it would use the wrong parameter
estimates. By including i in the second term on the right-hand side of (20), the adaptation of the
respective parameter freezes until i is non-zero. This diMerence makes the analysis of the properties
of adaptive law a little diMerent than that performed by Ioannou and Sun [7]. On the other hand, the
classical demand on the excitation of the external signal that prevents parameter drift is relaxed a
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little since some parameters are frozen at each instant and only those that correspond to the current
fuzzy domains are potential candidates for the undesired adaptation (parameter drift).

Note that the adaptation is not governed by the tracking error e in (22). Instead, signal � is used,
which is de2ned as

� = e − Gm(p)(�n2s); (23)

where n2s =m
2 − 1 and Gm(p) is the reference model operator in the time domain.

Theorem 1. Adaptive law described by (20) (or equivalently (21) or (22)) guarantees the bound-
edness of the estimated parameter vectors f and q, provided m is designed such that

w
m
;
yp
m

∈ L∞: (24)

Proof. Lyapunov-like function is chosen

Vfi =
1

2�fi
f2
i : (25)

Its derivative is

V̇ fi =
1
�fi
fiḟi = −bsign�wfii − |�m|�0f2

i i

=−|�m|�0i
(
f2
i + bsign sgn(�m)

w
m

1
�0
fi

)
: (26)

The derivative of the Lyapunov-like function (25) is non-positive if

|fi|¿
∣∣∣∣bsign sgn(�m) wm 1

�0

∣∣∣∣ = 1
�0

∣∣∣w
m

∣∣∣ : (27)

Since w=m∈L∞, |fi| is also bounded from above (it decreases until it reaches (1=�0)|w(t)=m(t)|).
In a similar manner it can be shown that qi is bounded if yp=m∈L∞. Since the design of m is
at the discretion of the designer, it can be concluded that estimated parameters are bounded, i.e.
f ; q∈L∞.

3.2.2. Error model
By subtracting (17) from (11), the following equation is obtained:

ė=−ame + [(RTb)(RTf)− bm]w − [(RTb)(RTq) + (RTa)− am]yp
+�′

u(p)u− �′
y(p)yp + d

′: (28)

It is impossible to 2nd such f and q that would make the expressions in square brackets equal to
zero for a general case. This means that the perfect tracking of the reference model is not possible
by any choice of the control vectors, even when no parasitic dynamics or disturbances are present.
A decision has to be made as to what values for the elements of the vectors f and q are the
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desired ones. Those elements will be denoted by f∗
i and q∗i . They will be obtained by making the

expressions in the square brackets in (28) equal to zero:

(RTb)(RTf)− bm = 0;

(RTb)(RTq) + (RTa)− am = 0: (29)

As established before, a general solution for f and q in (29) does not exist. A particular solution
will be found for cases where only one fuzzy domain is activated. This is done for all k fuzzy
domains to obtain all f∗

i ’s and q
∗
i ’s. Mathematically, this is done by setting R= [0 · · · 0 1 0 · · · 0]

in (29), i.e. by choosing ith element of the vector R equal to 1 while others are equal to 0

bif∗
i − bm = 0; i = 1; 2; : : : ; k;

biq∗i + ai − am = 0; i = 1; 2; : : : ; k: (30)

This actually means that the desired control parameters are the same as they would be if obtained
in each fuzzy domain separately. This also leads to perfect tracking if the plant is currently in only
one fuzzy domain (local linear model of that domain applies) and there are no parasitic dynamics
or disturbances. If some of the above conditions are violated, some terms on the right-hand side of
(28) are non-zero. It will be shown that these terms do not aMect the stability of the system.

Desired control parameters

f∗T = [f∗
1 f∗

2 · · · f∗
k ];

q∗T = [q∗1 q∗2 · · · q∗k ] (31)

are bounded due to (30) and the assumptions A1 and A2. The parameter errors are de2ned as

f̃ = f − f∗;

q̃ = q − q∗: (32)

Our wish is to change the expressions in the square brackets of (28) with new ones

(RTb)(RTf)− bm = bf̃
TR+ bm

#w
w
;

(RTb)(RTq) + (RTa)− am = bq̃TR+ bm
#y
yp
; (33)

where

b = inf
R
RTb = min

i
bi: (34)

By using (32) the 2rst equation in (33) yields:

bf̃
TR+ bm

#w
w

= RTbfTR− bm = RTbf∗TR+ RTbf̃TR− bm: (35)
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De2ne matrix B:

B =




b1

b2
...

bk


 [b−1

1 b−1
2 · · · b−1

k ] =




1 b1
b2

· · · b1
bk

b2
b1

1 · · · b2
bk

...
...

. . .
bk
b1

bk
b2

1


 : (36)

Using [1 1 · · · 1]R=1 (see Eq. (5)) and Eq. (36), Eq. (35) yields:

bf̃
TR+ bm

#w
w

= RTbf̃TR+ RTbmBR− bm[1 1 · · · 1]R

= RTbf̃TR+ bm{RTB− [1 1 · · · 1]}R: (37)

The expression in the curly brackets is denoted by ^T. Since 06i61, it follows:

min
j

bj
bi

− 16 %i 6 max
j

bj
bi

− 1

min
j

bj − bi
bi

6 %i 6 max
j

bj − bi
bi

|^TR|6 maxi;j |bj − bi|
mini |bi| ¡ C1 (38)

due to assumption A1, where C1 is a constant. Error #w can be deduced from (37)

#w(t) =
RT(t)b− b

bm
f̃
T
(t)R(t)w(t) + ^T(t)R(t)w(t) = fw(t)w(t); (39)

where fw(t) was introduced. Since RTb (gain of the plant), ^TR and f̃ are bounded (see assumption
A1 and Theorem 1), |fw| is always bounded, and it follows:

|#w(t)|6 |w(t)| sup
t

|fw| = Tfw|w(t)|: (40)

If the gain of the controlled plant does not depend very much on the antecedent variables (elements
of the vector b are similar), (RTb− b) and ^TR tend to zero and, consecutively, do Tfw and #w.
It follows from the second equation in (33)

#y =
[
(RTb)(RTq)

bm
+

(RTa)
bm

− am
bm

− bq̃TR
bm

]
yp: (41)
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It will be shown next that the function in the square brackets in (41) is bounded. Let us take a
look at the 2rst term in the square brackets of (41)

(RTb)(RTq)
bm

=
RTbq∗TR
bm

+
RTbq̃TR
bm

= RT



am
bm

B− 1
bm




a1 a2 b1b2 · · · ak b1bk
a1 b2b1 a2 · · · ak b2bk
...

...
. . .

a1 bkb1 a2 bkb2 ak






R+ RTbq̃TR

bm
: (42)

The matrix in the square brackets will be denoted by A in the following. Eq. (41) can be rewritten
as

#y =
[
RT
(
am
bm

B− 1
bm

A
)
R+ RTbq̃TR

bm
+

(RTa)
bm

− am
bm

− bq̃TR
bm

]
yp

=
am
bm

(RTB− [1 1 · · · 1])Ryp − 1
bm

{RTA − aT}Ryp + RTb− b
bm

q̃TRyp: (43)

The expression in the parentheses in the 2rst term is equal to ^T, while the expression in the curly
brackets is denoted by �T. Since 06i61, the ith element of the vector � can be bounded from
above and below:

min
j
ai
bj − bi
bi

6 'i 6 max
j
ai
bj − bi
bi

|�TR|6 max
i
ai

maxi;j |bi − bj|
mini bi

¡ C2 (44)

due to assumptions A1 and A2, where C2 is a constant. Finally #y can be expressed as

#y =
am
bm
^TRyp − 1

bm
�TRyp +

RTb− b
bm

q̃TRyp = fyyp: (45)

It can be seen from (45) that the introduced fy is a function of time. For our purposes, only the
upper bound on |fy(t)| is important. Since ^TR, �TR, q̃ (see Theorem 1) and (RTb − b)=bm are
bounded, it follows

|#y(t)|6 |yp(t)| sup
t

|fy(t)| = Tfy|yp(t)|: (46)

According to (45), Tfy illustrates the nonlinearity of the plant (or better, its gain). If the elements of
the vector b tend to a constant, Tfy tends to 0. For linear plants or such that the gain of the plant is
independent of R, Tfy is zero.
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The 2nal result follows from (28) and (33)

ė=−ame + bm
(
b
bm

f̃
TRw − b

bm
q̃TRyp + #w − #y

)
+ �′

u(p)u− �′
y(p)yp + d

′

=−ame + bm
(
b
bm

f̃
TRw − b

bm
q̃TRyp + fww − fyyp + �u(p)u− �y(p)yp + d

)
; (47)

where the introduction of �u(p) and �y(p) is obvious. In the following, the expression in parentheses
in (47) shall be replaced by # to simplify the notation, i.e.

#(t) = fw(t)w(t)− fy(t)yp(t) + �u(p)u(t)− �y(p)yp(t) + d(t): (48)

The expression in (47) is the so-called error model of the system that connects parameter vector
errors with the tracking error.

3.2.3. Boundedness and convergence of �

Theorem 2. The adaptive law described by (20), (23), and m2 = 1 + n2s together with error model
(47), guarantees:

• �; f̃ ; q̃∈L∞,
• �; �ns; �m∈S( #

2

m2 + �20), and

• ḟ ; q̇∈S( #
2

m2 + �20)

if #=m∈L∞.

The proof is given in Appendix C.

3.2.4. Boundedness of all signals in the system and the convergence of the tracking error
How to design normalising variable m remains to be solved. Theorems 1 and 2 demand that

w=m; yp=m; #=m∈L∞. According to (48), which de2nes #, we can propose the following formula

m2 = 1 + n2s ;

n2s = w2 + y2p + ms;

ṁs = −(0ms + u2 + y2p ms(0) = 0; (49)

where (0¿0 and will be discussed later.

Theorem 3. The model reference adaptive control system, described by (18), (20), (23) and (49),
is globally stable, i.e. all the signals in the system are bounded and the tracking error has the
following properties:

• e∈L∞, and
• e∈S(�2

2 + Td
2
+ �20)
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if the following conditions are satis8ed:

• c
)20
�2∞ + c

)20
+ c�2∞¡1,

• c�2
2 + c�

2
0¡(0,

• �u(s), �y(s) and Gm(s) are analytic in Re[s]¿− (0
2 ,• reference signal w is continuous, and

• R is a function of continuous signals

where

• �∞= max(‖�u(s)‖∞(0 ; ‖�y(s)‖∞(0 + Tfy),
• �2 = max(‖�u(s)‖2(0 ; ‖�y(s)‖2(0 ; Tfw; Tfy),
• Td= sup

t
|d(t)|,

• )0 is an arbitrary constant such that )0¿am,
• c are constants that depend on di9erent system parameters (reference model, (0, �0, and other).

Furthermore, estimated control gains converge to the residual set:{
fi; qi

∣∣∣∣|fi|¡ 1
�0
; |qi|¡ 1

�0
; i = 1; : : : ; k

}
: (50)

The proof is given in Appendix C.

Remark 1. In the theorem, transfer functions in the Laplace domain are used instead of the equivalent
operators in the time domain. If the analyticity or norms of the operators are needed, the description
in the s domain is more suitable. If the input–output relations of the system are used, the description
in the time domain is usually used. Both notations are used interchangeably in the rest of the
paper.

Remark 2. If the unmodelled dynamics of the plant that are represented by �∞ are small enough,
then by choosing large enough )0 (which is not a design parameter but is only used in stability
proof, meaning it is arbitrary), the 2rst condition can always be satis2ed. The 2rst term in the
second condition also gives information about the unmodelled dynamics. Together with the choice
of the leakage parameter �0, the second condition represents the lower bound on (0 that would still
ensure stable behaviour. On the other hand, (0 is also limited from above with the third condition.
The dominant limitation of the third condition is usually the condition on Gm(s) since it is not
advisable to choose a reference model that is ‘quicker’ than parasitic dynamics due to robustness
issues. The continuity of the reference signal is not as stringent as it appears at 2rst sight. We can
see from (C.44) that by choosing large enough )0, arbitrarily large derivatives of the reference signal
are allowed. Since adaptive control is usually realised by means of a digital controller, a reference
signal that consists of square impulses can be treated as continuous with large derivatives at points
of discontinuity.

Remark 3. The parameters fi and qi will converge to the residual set (50) if the adaptive error �
and the ful2lment of the corresponding membership functions i are non-zero. If these conditions
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are not satis2ed, the parameters will be frozen. This means that the asymptotic convergence of the
parameters is not guaranteed. On the other hand, the parameters that may be outside bounds (50)
do not contribute to the control signal since i is explicitly present in the control law.

Remark 4. The consequence of the second property of Theorem 3 is that short bursts of the signals
are possible (they are quite usual in many forms of adaptive systems, see e.g. [1]) but they are of
2nite amplitude and their duration is relatively short.

Remark 5. The convergence set (50) also represents potential danger in the event that the plant
itself is unstable and no element of set (50) provides stable behaviour of the plant. But this is a
known problem of the adaptation with leakage as shown by Rey et al. [14]. To avoid it, a controller
parameterisation (f̂1; f̂2; : : : ; f̂k ; q̂1; q̂2; : : : ; q̂k) has to be known that ensures stability of the system.
A slightly modi2ed adaptive law (20) should therefore be used to obtain stable system:

ḟi = −�fibsign�wi − �fi|�m|�0(fi − f̂i)i; i = 1; 2; : : : ; k;

q̇i = �qibsign�ypi − �qi|�m|�0(qi − q̂i)i; i = 1; 2; : : : ; k: (51)

Remark 6. The problem of choosing the design parameters �, �0 and (0 is still quite open. This is
an eternal problem in adaptive control. Some guidelines on choosing �0 and (0 can be obtained from
the conditions of Theorem 3. The latter does not impose any limitations on adaptive gain, but it is
generally known that its choice is of crucial importance for the good performance of the adaptive
system. As always, it turns out that any prior knowledge that is available to the designer can be
used to improve the performance or robustness of the overall system.

4. Simulation example

The proposed algorithm was tested on a simulation example. The simulated test plant consisted of
three water tanks. The schematic representation of the plant is given in Fig. 1. The control objective
was to maintain the water level in the third tank by changing the inJow into the 2rst tank.

Fig. 1. Schematic representation of the plant.
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When modelling the plant, it was assumed that the Jow through the valve was proportional to the
square root of the pressure diMerence on the valve. The mass conservation equations for the three
tanks are:

S1ḣ1 = ,in − k1 sgn(h1 − h2)
√

|h1 − h2|;
S2ḣ2 = k1 sgn(h1 − h2)

√
|h1 − h2| − k2 sgn(h2 − h3)

√
|h2 − h3|;

S3ḣ3 = k2 sgn(h2 − h3)
√

|h2 − h3| − k3 sgn(h3)
√

|h3|; (52)

where ,in is the volume inJow into the 2rst tank, h1, h2, and h3 are the water levels in three tanks,
S1, S2, and S3 are areas of the tanks cross-sections, and k1, k2, and k3 are coe9cients of the valves.
The following values were chosen for the parameters of the system:

S1 = S2 = S3 = 2× 10−2 m2;

k1 = k2 = k3 = 2× 10−4 m5=2 s−1: (53)

The nominal value of inJow ,in was set to 8× 10−5 m3 s−1, resulting in steady-state values 0.48,
0.32 and 0:16m for h1, h2, and h3, respectively. In the following, u and yp denote deviations of ,in
and h3, respectively, from the operating point.
The proposed fuzzy model reference adaptive control algorithm was compared to the classical

MRAC with e1-modi2cation via two experiments. Adaptive gains �fi and �qi in the case of DFMRAC
were the same as �f and �q, respectively, in the case of MRAC. The e1-modi2cation constants �0
were also the same in both cases. A reference signal was chosen as a periodical piece-wise constant
function which covered quite a wide area around the operating point (±50% of the nominal value).
There were 11 triangular fuzzy membership functions (the fuzzi2cation variable was yp) used; these
were distributed evenly across the interval [−0:1; 0:1]. If any information regarding nonlinearity
is available, it can be used in choosing the membership functions to obtain better results. The
control input signal u was saturated at the interval [−8× 10−5; 8× 10−5]. No prior knowledge of the
estimated parameters was available to us, so the initial parameter estimates were 0 for all examples.

The 2rst simulation experiment assumed that the tanks were high enough so that they would never
2ll up. Figs. 2 and 3 show the results of the classical MRAC, while Figs. 4 and 5 show the results
of DFMRAC. By comparing the responses in Figs. 2 and 4, one can observe that every change
in the reference signal results in a sudden increase in tracking error e (up to 0.01). This is due
to the fact that zero tracking of the reference model with relative degree 1 is not possible if the
plant has relative degree 3. Otherwise, much better results are achieved when using DFMRAC since
the diMerences in system dynamics when changing the operating point almost do not inJuence the
responses of the system. This is clearly seen by comparing Figs. 2 and 4. Also, the oscillations in
parameter estimates are smaller in the case of the fuzzy adaptive law. On the other hand, a much
longer period is needed for the estimates to reach quasi-equilibrium if fuzzy adaptive law is used
compared to the time needed if classical adaptive law is used.

The second experiment was conducted on the model where the tanks were 0:6 m high. The
responses are shown in Figs. 6 and 7. When the water level in a tank reaches 0:6 m, the security
mechanism stops the water inJow and prevents spillage. This assumption introduced discontinuity
into the system. A consequence was that the meeting of control requirements was not possible. It is
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Fig. 2. The classical MRAC with e1-modi2cation–time plots of the reference signal and outputs of the plant and the
reference model (upper 2gure), time plot of tracking error (middle 2gure), and time plot of the control signal (lower
2gure).

true that the water level never has to approach 0:6 m in the third tank, but it does in the 2rst tank
when the desired level in the third tank reaches some point. No control algorithm exists that could
zero the tracking error when the reference signal is too high. The classical adaptive law responded
to that disturbance by increasing the control parameters, while fuzzy adaptive law increased only
one parameter. When the system left that operating point, the behaviour of the DFMRAC system
was good, while classical MRAC had to retune the parameters to reach the normal values.

The experiments show that the performance of the DFMRAC is much better than the performance
of the other approach. Very good results are obtained in the case of DFMRAC, even though that the
parasitic dynamics are nonlinear and the plant of ‘relative degree’ 3 is forced to follow the reference
model of relative degree 1.
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Fig. 3. The classical MRAC with e1-modi2cation–time plots of feedforward (upper 2gure) and feedback (lower 2gure)
control gains.

The drawback of DFMRAC is relatively slow convergence, since the parameters are only adapted
when the corresponding membership is non-zero. This drawback can be overcome by using classical
MRAC in the beginning when there are no parameter estimates or the estimates are bad. When the
system approaches reasonably good behaviour, adaptation can switch to that proposed by initialising
all elements of vectors f and q by estimated scalar parameters f and q, respectively. After the
switching, the 2ne tuning of parameters in vectors f and q is performed to accommodate the control
requirements. In our case all the estimates were 0 at the beginning, resulting in the fact that the
controller gains were too small at the beginning. The output of the plant was also too small and some
periods of the reference signal were needed so that the output reached the outermost membership
functions. This means that for some time the corresponding control gains were 0, since they were
not adapted. The system was in the ‘magic circle’ that prevented it from reaching the desired
behaviour at the beginning. Some experiments have shown that if the reference model output was
chosen as a fuzzi2cation variable, this start-up interval was shortened, which is understandable since
adaptation started in all fuzzy domains in the 2rst period. When the system was moving towards
desired behaviour, the diMerence between yp and ym as fuzzi2cation variables did not make much
diMerence. The problem is that the approach with ym as fuzzi2cation variable does not have any
background in the fuzzy model.

5. Conclusions

A direct fuzzy adaptive control algorithm was presented in the paper. It was shown in Theorem 3
that the closed-loop system is stable provided some conditions concerning the size of disturbances
and high-order parasitics are met. The advantage of the proposed approach is that it is very simple
to design, but it still oMers the advantages of nonlinear and adaptive controllers. It was shown in the
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Fig. 4. The DFMRAC–time plots of the reference signal and outputs of the plant and the reference model (upper 2gure),
time plot of tracking error (middle 2gure), and time plot of the control signal (lower 2gure).
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Fig. 5. The DFMRAC–time plots of feedforward (upper 2gure) and feedback (lower 2gure) control gains.
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Fig. 6. Response of the classical MRAC with e1-modi2cation (the case with 2nite height of tanks).
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Fig. 7. Response of the DFMRAC (the case with 2nite height of tanks).

example that good results can be obtained if a third-order plant is treated as a 2rst-order plant. It also
proves very successful when disturbances are present only in certain operating regions, since only
estimates of the corresponding parameters are bad. When the system leaves those conditions (fuzzy
domains), perfect functioning of the controller is restored instantly. The drawback of the approach
is the long period of adaptation, which is the result of the large number of parameters that have to
be estimated. To speed up adaptation, classical adaptation can be used in the early phase, followed
by fuzzy adaptation when classical adaptation quasi-settles. Switching from the former to the latter
is very easy and does not cause any bumps.

Appendix A

In this section some functional analysis preliminaries are given on the norms and smallness of
signals in the mean square sense that are used frequently throughout the paper. They are given
here for the sake of completeness. More complete treatment can be found in textbooks on functional
analysis. A very good summary needed for use in control in general, and especially in robust adaptive
control, is given in the book by Ioannou and Sun [7].

Since most of the signals analysed in the paper do not have 2nite Lp norms, Lpe norms are
used instead. They are de2ned as usual Lp norms, but the upper limit of the integral is t instead of
in2nity. If a function has a 2nite Lpe norm, we say it belongs to Lpe set. For stability analysis of
the proposed algorithm, exponentially weighted L2 norms are shown to be particularly useful. They
are de2ned as

‖xt‖2( ,
(∫ t

0
e−((t−-)xT(-)x(-) d-

)1=2

; (A.1)
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where (¿0 is a constant. If the LTI system is given by

y = H (s)u; (A.2)

where H (s) is a proper rational function of s that is analytic in Re[s]¿−(=2 for some (¿0 and
u∈L2e then

‖yt‖2( 6 ‖H (s)‖∞(‖ut‖2(; (A.3)

where

‖H (s)‖∞( , sup
!

|H (j!− (
2)|: (A.4)

Furthermore, when H (s) is strictly proper, we have

|y(t)|6 ‖H (s)‖2(‖ut‖2( (A.5)

where

‖H (s)‖2( , 1√
20

(∫ ∞

−∞
|H (j!− (

2)|2 d!
)1=2

: (A.6)

De2nition of smallness in the mean square sense [7]:
Let x : [0;∞)→Rn, w : [0;∞)→R+ where x∈L2e, w∈L1e and consider the set

S(w) =
{
x; w

∣∣∣∣
∫ t+T

t
xT(-)x(-) d-6 c0

∫ t+T

t
w(-) d-+ c1; ∀t; T ¿ 0

}
; (A.7)

where c0; c1¿0 are some 2nite constants. We say that x is w-small in the mean square sense if
x∈S(w).

Appendix B

Some useful lemmas are given in the appendix. They are indispensable in the paper since they are
used repeatedly in the proofs of the theorems. They are given here without explicit proofs. Most of
them are proven implicitly; the others are very simple to prove and therefore the proofs are omitted.

If x(t) is a vector and Q(t) is a scalar, or vice versa, then

‖(xQ)t‖2( =
(∫ t

0
e−((t−-)xT(-)x(-)QT(-)Q(-) d-

)1=2

6
(∫ t

0
e−((t−-)xT(-)x(-) d-

)1=2

sup
t
(QT(t)Q(t))1=2 = ‖xt‖2( sup

t
|Q(t)|: (B.1)



S. Bla�zi�c et al. / Fuzzy Sets and Systems 139 (2003) 3–33 23

If x(t) and Q(t) are vectors then

‖(xTQ)t‖2( =
(∫ t

0
e−((t−-)xT(-)Q(-)QT(-)x(-) d-

)1=2

6
(∫ t

0
e−((t−-)xT(-)1max(Q(-)QT(-))x(-) d-

)1=2

=
(∫ t

0
e−((t−-)xT(-)x(-)|Q(-)|2 d-

)1=2

= ‖(x|Q|)t‖2(; (B.2)

where 1max(A) denotes the largest eigenvalue of the matrix A. The only non-zero eigenvalue of the
matrix ccT is |c| for any vector c �= 0. Combining (B.1) and (B.2), we get

‖(xTQ)t‖2( 6 ‖(x|Q|)t‖2( 6 ‖xt‖2( sup
t

|Q(t)|: (B.3)

If x(t) is a vector then the upper bound on ‖xt‖2( is

‖x‖2(=
(∫ t

0
e−((t−-)xT(-)x(-) d-

)1=2

6
(∫ t

0
e−((t−-) d-

)1=2

sup
t
(xT(t)x(t))1=2

=

√
1− e−(t

(
sup
t

|x(t)|¡ 1√
(
sup
t

|x(t)|: (B.4)

Since elements of vector R are normalised it follows:

sup
t
|R(t)| = sup

t

√√√√ k∑
i=1

2i (t)6

√√√√ k∑
i=1

i = 1: (B.5)

If f(t), g(t) and h(t) are scalar functions of time and xi(t) are vector functions of time (i =
1; 2; : : : ; k), then
•

‖(fh)t‖+ ‖(gh)t‖ =

√∫ t

0
e−((t−-)(f2(-) + g2(-))h2(-) d- = ‖(h

√
f2 + g2)t‖; (B.6)

• ∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

x1(t)

x2(t)

...

xk(t)

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣
=

√∫ t

0
e−((t−-)(xT1 (t)x1(t) + · · ·+ xTk (t)xk(t)) d-

= ‖x1(t)‖+ · · ·+ ‖xk(t)‖: (B.7)
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If xi (i = 1; 2; : : : ; n) are real numbers, then(
n∑
i=1

xi

)2

6 n
n∑
i=1

x2i : (B.8)

Appendix C

In this appendix the extensive proofs of Theorems 2 and 3 are given. Both follow the general lines
of the similar proofs presented by Ioannou and Sun [7]. There are, of course, many peculiarities of
fuzzy modelling that make our proofs quite diMerent to the ones mentioned.

The proof of Theorem 2. According to the error model (47), the tracking error e is obtained by
2ltering parameter errors and the unmodelled term by a reference model Gm

e = Gm(p)
(
b
bm

f̃
TRw − b

bm
q̃TRyp + #

)
: (C.1)

By combining (23) and (C.1) we get

� = Gm

(
b
bm

f̃
TRw − b

bm
q̃TRyp + #− �n2s

)
: (C.2)

A Lyapunov function is proposed

V =
1
2
f̃
T
�−1
f f̃ +

1
2
q̃T�−1

q q̃ +
1

2|b| �
2: (C.3)

The derivative of the Lyapunov function (C.3) is

V̇ = f̃
T
�−1
f

˙̃f + q̃T�−1
q

˙̃q +
1
|b| ��̇: (C.4)

Since ˙̃f = ḟ∗ and ˙̃q = q̇∗, it follows from (C.4), using (21) and (C.2)

V̇ = f̃
T
�−1
f (−�fbsign�wR− �f|�m|�0FR)

+ q̃T�−1
q (�qbsign�ypR− �q|�m|�0QR)

+
1
|b| �

(
−am�+ bm

(
b
bm

f̃
TRw − b

bm
q̃TRyp − �n2s + #

))

=− f̃
T
bsign�wR− f̃

T|�m|�0FR+ q̃Tbsign�ypR− q̃T|�m|�0QR

− am
|b| �

2 + sgn(b)f̃
TRw�− sgn(b)q̃TRyp�+

bm
|b|(−�

2n2s + �#)

=−|�m|�0(f̃TF+ q̃TQ)R− am
|b| �

2 +
bm
|b|(−�

2n2s + �#): (C.5)
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The last equality follows from the assumption A3 that all bi’s and b have the same sign,
i.e. bsign.
What can be said about −(f̃ TF+ q̃TQ)R?

−(f̃
T
F+ q̃TQ)R = −

k∑
i=1

(f̃ifii + q̃iqii) = −
k∑
i=1

(f̃i(f
∗
i + f̃i)i + q̃i(q

∗
i + q̃i)i)

=
k∑
i=1

(−f̃2
i i − q̃2i i − f∗

i f̃ii − q∗i q̃ii)

6
k∑
i=1

(−f̃2
i i − q̃2i i + |f∗

i | · |f̃i|i + |q∗i | · |q̃i|i)

6
k∑
i=1

(
−f̃2

i i − q̃2i i + |f∗
i | · |f̃i|i + |q∗i | · |q̃i|i

+
i
2
(|f̃i| − |f∗

i |)2 +
i
2
(|q̃i| − |q∗i |)2

)

=
k∑
i=1

(
−i

2
f̃

2
i −

i
2
q̃2i +

i
2
f∗
i
2 +

i
2
q∗i

2
)

=
k∑
i=1

(
i
2
(−f̃2

i − q̃2i + f∗
i
2 + q∗i

2)
)

6−min

(
k∑
i=1

(
i
2
(f̃

2
i + q̃

2
i )
))

+max

(
k∑
i=1

(
i
2
(f∗

i
2 + q∗i

2)
))

= 0 +max
i

(
1
2
(f∗

i
2 + q∗i

2)
)
: (C.6)

The calculated upper bound of −(f̃ TF + q̃TQ)R in (C.6) will be denoted by X∗2. Using (C.6) and
the inequality

−am|b| �
2 − bm

|b| �
2n2s 6 −min(am; bm)

|b| �2(1 + n2s) = −min(am; bm)
|b| �2m2;

it follows from (C.5):

V̇ 6 |�m|�0X∗2 − min(am; bm)
|b| �2m2 +

bm
|b| �#

6 |�m|
(
�0X∗2 − min(am; bm)

|b| |�m|+ bm
|b|

|#|
m

)
: (C.7)
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Since the desired control parameters (f∗
i and q∗i ) are 2nite, so is the constant X∗2. The last term in

the inequality (C.7) is bounded by the assumption of the theorem. The derivative of the Lyapunov
function will be de2nitely non-positive if

|�m|¿ �0|b|
min(am; bm)

X∗2 + bm
min(am; bm)

|#|
m
: (C.8)

Since |�m| is positive if inequality (C.8) holds, V̇ in (C.7) is strictly negative, not just non-positive
when condition (C.8) is satis2ed. Since m¿1 by construction, |�|6|�m| is true and large enough |�|
causes the Lyapunov function to start decreasing. It was shown previously (see Theorem 1) that f̃
and q̃ are bounded. From these two facts it follows:

V; �; f̃ ; q̃ ∈ L∞: (C.9)

Inequality (C.7) can be rewritten as

V̇ 6−k21 �2m2 + �0|�m|X∗2 + k22 |�m|
|#|
m

6−k21 �2m2 + �0|�m|X∗2 + k22 |�m|
|#|
m

+
1
2

(
k1|�m| − 1

k1

(
k22

|#|
m

+ �0X∗2
))2

= −k
2
1

2
�2m2 +

1
2k21

(
k22

|#|
m

+ �0X∗2
)2

6 −k
2
1

2
�2m2 +

1
2k21

(
k22

|#|
m

+ �0X∗2
)2

+
1
2k21

(
k22

|#|
m

− �0X∗2
)2

= −k
2
1

2
�2m2 +

k42
k21

|#|2
m2 +

1
k21
�20X∗

4; (C.10)

where min(am; bm)=|b| was substituted by k21 and bm=|b| by k22 . Integrating both sides of the inequality
(C.10), we obtain∫ t

t0

k21
2
�2m2 d-6

∫ t

t0

(
k42
k21

#2

m2 +
1
k21
�20X∗

4
)
d-+ V (t0)− V (t) (C.11)

for ∀t¿t0 and any t0¿0. Because V ∈L∞ and m2 = 1 + n2s , it follows

�; �ns; �m ∈ S

(
#2

m2 + �20

)
; (C.12)

where S(·) gives information about the mean square value of the signals and is de2ned in Appendix
A.

From (21) it follows:

ḟ = −�f�m
(
bsign

w
m

+ sgn(�m)�0F
)
R;

q̇ = −�q�m
(
−bsign ypm + sgn(�m)�0Q

)
R (C.13)
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and consecutively

|ḟ |6 c|�m| since
w
m
; F ∈ L∞;

|q̇|6 c|�m| since
yp
m
; Q ∈ L∞: (C.14)

Combining (C.12) and (C.14) it follows ḟ ; q̇∈S( #
2

m2 + �20).

The proof of Theorem 3. In the following, ‖(·)‖ denotes the L2(0 norm, i.e. ‖(·)t‖2(0 .
By de2ning X̃T, [f̃ T q̃T] and �T, [RTw −RTyp], (47) can be rewritten as

e = Gm(p)
(
b
bm
X̃T�+ #

)
: (C.15)

The normalising signal m in (49) is equal to

m2 = 1 + w2 + y2p + ‖u‖2 + ‖yp‖2: (C.16)

It will be shown that #=m; ‖#‖=m; u=m; ‖u‖=m; yp=m; ‖yp‖=m; !=m; ‖!‖=m; ‖ẏp‖=m∈L∞. If addition-

ally ẇ∈L∞, then ‖�̇‖
m ∈L∞.

It follows from (48), by using property (A.3):

‖#‖6 ‖�u‖∞(0‖u‖+ ‖�y‖∞(0‖yp‖+ Tfw‖w‖+ Tfy‖yp‖+ ‖d‖

6
1√
(
( Tfw Tw + Td) + ‖�u‖∞(0‖u‖+ (‖�y‖∞(0 + Tfy)‖yp‖

6
1√
(
( Tfw Tw + Td) + �∞m; (C.17)

where �∞= max(‖�u‖∞(0 ; ‖�y‖∞(0 + Tfy). Similarly it follows from (48), (A.5) and (B.8):

|#|6 ‖�u(s)‖2(0‖ut‖2(0 + ‖�y(s)‖2(0‖(yp)t‖2(0 + Tfw|w|+ Tfy|yp|+ Td

6max(‖�u(s)‖2(0 ; ‖�y(s)‖2(0 ; Tfw; Tfy)(‖ut‖2(0 + ‖(yp)t‖2(0 + |w|+ |yp|) + Td

6 2max(‖�u(s)‖2(0 ; ‖�y(s)‖2(0 ; Tfw; Tfy)m+ Td = 2�2m+ Td; (C.18)

where �2 = max(‖�u(s)‖2(0 ; ‖�y(s)‖2(0 ; Tfw; Tfy). From (C.18) and (B.8) we have

#2 6 8�2
2m

2 + 2 Td
2
: (C.19)

The boundedness of ‖u‖=m, ‖yp‖=m and yp=m follows directly from (C.16). Using (B.7), (B.1),
(B.5), (B.4) and (C.16), we get

‖�‖ = ‖ − Rw‖+ ‖ − Ryp‖6 ‖w‖+ ‖yp‖6 c Tw + m: (C.20)
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Similarly:

|�| =
√
|Rw|2 + | − Ryp|2 =

√
|R|2w2 + |R|2y2p 6

√
w2 + y2p ¡ m: (C.21)

The input signal u is calculated according to the formula

u = XT�: (C.22)

Due to the boundedness of the parameter vector X that is guaranteed by the adaptive law (Theorem
1) and (C.21), it can be concluded that u6cm.

Using (C.15), the output of the plant can be written as

yp = Gm(p)
(
w +

b
bm
X̃T�+ #

)
: (C.23)

The consequence of (C.23) is

ẏp = pGm(p)
(
w +

b
bm
X̃T�+ #

)
: (C.24)

From (C.24) it follows, by using (A.3), (B.4) and (C.17)

‖ẏp‖6 ‖sGm(s)‖∞(0

(
‖w‖+ b

bm
‖X̃T�‖+ ‖#‖

)
6 c Tw + c‖�‖+ c‖#‖

6 c Tw + c Tfw Tw + c Td+ c�∞m+ cm: (C.25)

The upper bound for the norm of the vector �̇ is calculated from the norms of its elements (see
Eq. (B.7))

‖�̇‖ =
∣∣∣∣
∣∣∣∣ d

dt (Rw)
d
dt (−Ryp)

∣∣∣∣
∣∣∣∣ = ‖Ṙw + Rẇ‖+ ‖ − Rẏp − Ṙyp‖

6 ‖Ṙw‖+ ‖Rẇ‖+ ‖Rẏp‖+ ‖Ṙyp‖

6 sup
t
|Ṙ|

(
Tw√
(
+ ‖yp‖

)
+ sup

t
|R|

( Ṫw√
(
+ ‖ẏp‖

)

6 c Tw + c Tfw Tw + c Ṫw + c Td+ c�∞m+ cm; (C.26)

where Ṫw= sup
t
|ẇ(t)|, i.e. reference signal w(t) has to be continuous. When the membership functions

depend only on signals that are continuous (e.g. yp and w when the above assumption holds),
i; i=1; 2; : : : ; k, are also continuous and their derivatives are 2nite all the time, so the last inequality
in (C.26) 2nally follows.

It follows from (C.23) and (C.17)

‖yp‖ = ‖Gm(s)‖∞(0

(
‖w‖+ b

bm
‖X̃T�‖+ ‖#‖

)

6 c Tw + c‖X̃T�‖+ c Tfw Tw + c Td+ c�∞m (C.27)
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and

|yp| = ‖Gm(s)‖2(0
(
‖w‖+ b

bm
‖X̃T�‖+ ‖#‖

)
6 c Tw + c‖X̃T�‖+ c Tfw Tw + c Td+ c�∞m: (C.28)

From (11) it follows:

u=
1
RTb (ẏp + (RTa)yp + �′

y(p)yp − �′
u(p)u− d′)

=
(

1
RTb pGm(p) +

RTa
RTb Gm(p)

)(
w +

b
bm
X̃T�+ #

)

+
bm
RTb (�y(p)yp − �u(p)u− d) (C.29)

and further:

‖u‖6
(
sup
t

∣∣∣∣ 1
RT(t)b

∣∣∣∣ ‖sGm(s)‖∞(0 + sup
t

∣∣∣∣RT(t)aRT(t)b

∣∣∣∣ ‖Gm(s)‖∞(0

)(
‖w‖+ b

bm
‖X̃T�‖+ ‖#‖

)

+ sup
t

∣∣∣∣ bm
RT(t)b

∣∣∣∣ (‖�y(s)‖∞(0‖yp‖+ ‖�u(s)‖∞(0‖u‖+ ‖d‖)

6 c Tw + c Tfw Tw + c Td+ c�∞m+ c‖X̃T�‖: (C.30)

Combining (C.27), (C.28) and (C.30), and using (B.8), the following inequality is obtained:

m2 = 1 + w2 + y2p + ‖u‖2 + ‖yp‖2 6 1 + c Tw2 + c Tf
2
w Tw2 + c Td

2
+ c�2

∞m
2 + c‖X̃T�‖2: (C.31)

From (C.2), the error � can be rewritten as

� = Gm

(
b
bm
X̃T�− �n2s + #

)
: (C.32)

The product X̃T� can be decomposed into

X̃T� =
1

p+ )0
(X̃T�̇+ ˙̃X

T
�) + )0

p+ )0
X̃T�; (C.33)

where )0 is an arbitrary positive number.
We can use (C.32) and the fact that Gm(s) = bm=(s+ am) to further derive from (C.33):

X̃T� =
1

p+ )0
(X̃T�̇+ ˙̃X

T
�) + )0(p+ am)

(p+ )0)b
�− )0bm

(p+ )0)b
#+

)0bm
(p+ )0)b

�n2s : (C.34)

The (-shifted norms H∞ of the transfer functions 1=(s+)0) and (s+am)=(s+)0) are 1=()0−(=2)
and 1, respectively. Since )0¿am¿(=2¿0, it follows:

1
)0 − (=2 ¡

c
)0
: (C.35)
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Using this, the following inequality is obtained:

‖X̃T�‖6 c
)0

(‖X̃T�̇‖+ ‖ ˙̃X
T
�‖) + c)0‖�‖+ c‖#‖+ c‖�n2s‖: (C.36)

Using (B.2) and (C.21), we get

‖ ˙̃X
T
�‖6 ‖ ˙̃X|�|‖6 ‖ ˙̃Xm‖: (C.37)

From (B.3) and (C.26) it follows:

‖X̃T�̇‖6 ‖�̇‖ sup
t
|X̃|6 c Tw + c Tfw Tw + c Ṫw + c Td+ c�∞m+ cm: (C.38)

By inserting (C.37), (C.38) and (C.17) into (C.36), we get

‖X̃T�‖6 c
)0
‖ ˙̃Xm‖+ c)0‖�‖+ c‖�n2s‖+

c
)0

Tw +
c
)0

Tfw Tw +
c
)0

Ṫw +
c
)0

Td

+
c
)0
�∞m+

c
)0
m+ c Tfw Tw + c Td+ c�∞m: (C.39)

Since � is bounded (which is guaranteed by the adaptive law as shown before) and ns¡m, it
follows:

‖X̃T�‖6 c
)0

‖ ˙̃Xm‖+ c‖�nsm‖+
(
c
)0
�∞ +

c
)0

+ c�∞
)
m

+
(
c)0 T�+

c
)0

Tw +
c
)0

Tfw Tw +
c
)0

Ṫw +
c
)0

Td+ c Tfw Tw + c Td
)
: (C.40)

Using (B.6) we get

c
)0

‖ ˙̃Xm‖+ c‖�nsm‖ =
c
)0

‖| ˙̃X|m‖+ c‖�nsm‖6 c‖gm‖; (C.41)

where g2 = | ˙̃X|2=)20 + (�ns)2. Since �ns;
˙̃X∈S(#2=m2 + �20), it also holds that g ∈ S(#2=m2 + �20) or by

using (C.19)

g ∈ S

(
�2
2 +

Td
2

m2 + �20

)
: (C.42)

If the term in the parentheses in (C.40) is denoted by c′, the inequality (C.40) becomes

‖X̃T�‖6 c‖gm‖+
(
c
)0
�∞ +

c
)0

+ c�∞
)
m+ c′: (C.43)
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By using (C.31) and (C.43) it follows:

m26 1 + c Tw2 + c Tf
2
w Tw2 + c Td

2
+ c�2

∞m
2 + c‖gm‖2 +

(
c
)20
�2
∞ +

c
)20

+ c�2
∞

)
m2 + cc′2

6 c‖gm‖2 +
(
c
)20
�2
∞ +

c
)20

+ c�2
∞

)
m2 +

(
c +

c
)20

)
Tw2 +

(
c +

c
)20

)
Tf
2
w Tw2

+
(
c +

c
)20

)
Td
2
+ c)20 T�

2 +
c
)20

Ṫw
2
+ 1: (C.44)

If the following condition is ful2lled

c
)20
�2
∞ +

c
)20

+ c�2
∞ ¡ 1 (C.45)

we have

m26 c‖gm‖2 +
(
c +

c
)20

)
Tw2 +

(
c +

c
)20

)
Tf
2
w Tw2

+
(
c +

c
)20

)
Td
2
+ c)20 T�

2 +
c
)20

Ṫw
2
+ c: (C.46)

Eq. (C.46) can be rewritten by using the de2nition of the L2( norm

m2(t)6 c
∫ t

0
e−((t−-)g2(-)m2(-) d-+ K; (C.47)

where the de2nition of K follows directly from (C.46). By applying the Bellman–Gronwall lemma
to inequality (C.47), we get

m2(t)6 Ke−(tec
∫ t
0 g2(s) ds + K(

∫ t

0
e−((t−-)ec

∫ t
- g

2(s) ds d-: (C.48)

Because of (C.42), the following is true:

c
∫ t

-
g2(s) ds6 c0 + c1(t − -)�2

2 + c2(t − -)
Td
2

m2 + c3(t − -)�20 (C.49)

for ∀-¿0, ∀t¿- and some positive constants c0, c1, c2 and c3. If

c1�2
2 + c2

Td
2

m2 + c3�20 6 (0 (C.50)

then it follows from (C.48) that m(t) is bounded. The second term becomes arbitrarily small as
soon as yp(t) (which is smaller than m(t) by design) reaches some level that depends on the upper
bound of the disturbance. That term can be left out and the condition (C.50) then becomes

c1�2
2 + c3�

2
0 ¡ (0: (C.51)
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As mentioned before, m(t) will be bounded if inequality (C.51) is satis2ed and m(t) is large enough
(this is true if yp(t) is also large enough), so that Td2=m2 is negligible. When m(t) falls below the
critical value, the system can temporarily become unstable, but it stabilises as soon as (C.50) is
ful2lled again. This is the well-known phenomenon of bursting.

Inequality (C.51) bounds the selection of proper (0 in the adaptive law from below. On the other
hand, (0 should not be too large since some transfer functions have to be analytical in the part of
the complex plane where Re[s]¿−(0=2.

The only task that remains unsolved is to show the convergence of the tracking error. Due to
(23) the tracking error equals

e = �+ Gm(p)(�n2s): (C.52)

The input to the reference model �n2s can be written as a product of �ns which belongs to S(�2
2 +

Td2=m2 + �20), and ns, which was shown to be bounded. It can therefore be concluded:

�n2s ∈ S

(
�2
2 +

Td
2

m2 + �20

)
: (C.53)

If the impulse response of the linear system H (p) belongs to L1 then u′∈S(�) implies that
y′∈S(�) and y∈L∞ for any 2nite �¿0 where u′ and y′ are the input and the output of the
system H (p), respectively [7]. In our case, the impulse response of the reference model is bme−amt
and therefore it belongs to L1. Using this fact and (C.53), it follows:

Gm(p)(�n2s) ∈ S

(
�2
2 +

Td
2

m2 + �20

)
;

Gm(p)(�n2s) ∈ L∞: (C.54)

It was shown previously that

� ∈ S

(
�2
2 +

Td
2

m2 + �20

)
;

� ∈ L∞: (C.55)

By combining (C.52), (C.54) and (C.55), we arrive at the 2nal result

e ∈ S(�2
2 + Td

2
+ �20);

e ∈ L∞; (C.56)

where it was taken into account that m is bounded.
The proof of (50) follows directly from the proof of Theorem 1 (see Eq. (27)) by noting that

|w=m|¡1 and |yp=m|¡1.
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